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Preface
Physical and natural phenomena depend on a complex array of factors. The sociol-
ogist or psychologist who studies group behavior, the economist who endeavors
to understand the vagaries of a nation’s employment cycles, the physicist who
observes the trajectory of a particle or planet, or indeed anyone who seeks to
understand geometry in two, three, or more dimensions recognizes the need to
analyze changing quantities that depend on more than a single variable. Vec-
tor calculus is the essential mathematical tool for such analysis. Moreover, it
is an exciting and beautiful subject in its own right, a true adventure in many
dimensions.

The only technical prerequisite for this text, which is intended for a
sophomore-level course in multivariable calculus, is a standard course in the cal-
culus of functions of one variable. In particular, the necessary matrix arithmetic
and algebra (not linear algebra) are developed as needed. Although the mathe-
matical background assumed is not exceptional, the reader will still be challenged
in places.

My own objectives in writing the book are simple ones: to develop in students
a sound conceptual grasp of vector calculus and to help them begin the transition
from first-year calculus to more advanced technical mathematics. I maintain that
the first goal can be met, at least in part, through the use of vector and matrix
notation, so that many results, especially those of differential calculus, can be
stated with reasonable levels of clarity and generality. Properly described, results
in the calculus of several variables can look quite similar to those of the calculus
of one variable. Reasoning by analogy will thus be an important pedagogical tool.
I also believe that a conceptual understanding of mathematics can be obtained
through the development of a good geometric intuition. Although I state many
results in the case of n variables (where n is arbitrary), I recognize that the most
important and motivational examples usually arise for functions of two and three
variables, so these concrete and visual situations are emphasized to explicate the
general theory. Vector calculus is in many ways an ideal subject for students
to begin exploration of the interrelations among analysis, geometry, and matrix
algebra.

Multivariable calculus, for many students, represents the beginning of signif-
icant mathematical maturation. Consequently, I have written a rather expansive
text so that they can see that there is a story behind the results, techniques, and
examples—that the subject coheres and that this coherence is important for prob-
lem solving. To indicate some of the power of the methods introduced, a number
of topics, not always discussed very fully in a first multivariable calculus course,
are treated here in some detail:

• an early introduction of cylindrical and spherical coordinates (§1.7);

• the use of vector techniques to derive Kepler’s laws of planetary motion
(§3.1);

• the elementary differential geometry of curves in R3, including discussion
of curvature, torsion, and the Frenet–Serret formulas for the moving frame
(§3.2);

• Taylor’s formula for functions of several variables (§4.1);
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• the use of the Hessian matrix to determine the nature (as local extrema) of
critical points of functions of n variables (§4.2 and §4.3);

• an extended discussion of the change of variables formula in double and triple
integrals (§5.5);

• applications of vector analysis to physics (§7.4);

• an introduction to differential forms and the generalized Stokes’s theorem
(Chapter 8).

Included are a number of proofs of important results. The more techni-
cal proofs are collected as addenda at the ends of the appropriate sections so
as not to disrupt the main conceptual flow and to allow for greater flexibility
of use by the instructor and student. Nonetheless, some proofs (or sketches of
proofs) embody such central ideas that they are included in the main body of the
text.

New in the Fourth Edition
I have retained the overall structure and tone of prior editions. New features in
this edition include the following:

• 210 additional exercises, at all levels;

• a new, optional section (§5.7) on numerical methods for approximating
multiple integrals;

• reorganization of the material on Newton’s method for approximating
solutions to systems of n equations in n unknowns to its own (optional)
section (§2.7);

• new proofs in Chapter 2 of limit properties (in §2.2) and of the general
multivariable chain rule (Theorem 5.3 in §2.5);

• proofs of both single-variable and multivariable versions of Taylor’s theorem
in §4.1;

• various additional refinements and clarifications throughout the text,
including many new and revised examples and explanations;

• new Microsoft R� PowerPoint R� files and Wolfram Mathematica R� notebooks
that coordinate with the text and that instructors may use in their teaching
(see “Ancillary Materials” below).

How to Use This Book
There is more material in this book than can be covered comfortably during a single
semester. Hence, the instructor will wish to eliminate some topics or subtopics—or
to abbreviate the rather leisurely presentations of limits and differentiability. Since
I frequently find myself without the time to treat surface integrals in detail, I have
separated all material concerning parametrized surfaces, surface integrals, and
Stokes’s and Gauss’s theorems (Chapter 7), from that concerning line integrals
and Green’s theorem (Chapter 6). In particular, in a one-semester course for
students having little or no experience with vectors or matrices, instructors can
probably expect to cover most of the material in Chapters 1–6, although no doubt
it will be necessary to omit some of the optional subsections and to downplay
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many of the proofs of results. A rough outline for such a course, allowing for
some instructor discretion, could be the following:

Chapter 1 8–9 lectures
Chapter 2 9 lectures
Chapter 3 4–5 lectures
Chapter 4 5–6 lectures
Chapter 5 8 lectures
Chapter 6 4 lectures

38–41 lectures

If students have a richer background (so that much of the material in Chapter 1
can be left largely to them to read on their own), then it should be possible to treat
a good portion of Chapter 7 as well. For a two-quarter or two-semester course,
it should be possible to work through the entire book with reasonable care and
rigor, although coverage of Chapter 8 should depend on students’ exposure to
introductory linear algebra, as somewhat more sophistication is assumed there.

The exercises vary from relatively routine computations to more challenging
and provocative problems, generally (but not invariably) increasing in difficulty
within each section. In a number of instances, groups of problems serve to intro-
duce supplementary topics or new applications. Each chapter concludes with a
set of miscellaneous exercises that both review and extend the ideas introduced
in the chapter.

A word about the use of technology. The text was written without reference
to any particular computer software or graphing calculator. Most of the exercises
can be solved by hand, although there is no reason not to turn over some of the
more tedious calculations to a computer. Those exercises that require a computer
for computational or graphical purposes are marked with the symbol ◆T and
should be amenable to software such as Mathematica®, Maple®, or MATLAB.

Ancillary Materials
In addition to this text a Student Solutions Manual is available. An Instructor’s
Solutions Manual, containing complete solutions to all of the exercises, is
available to course instructors from the Pearson Instructor Resource Center
(www.pearsonhighered.com/irc), as are many Microsoft R� PowerPoint R� files and
Wolfram Mathematica R� notebooks that can be adapted for classroom use. The
reader can find errata for the text and accompanying solutions manuals at the
following address:
www.oberlin.edu/math/faculty/colley/VCErrata.html
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To the Student:
Some Preliminary
Notation
Here are the ideas that you need to keep in mind as you read this book and learn
vector calculus.

Given two sets A and B, I assume that you are familiar with the notation
A ∪ B for the union of A and B—those elements that are in either A or B (or
both):

A ∪ B = {x | x ∈ A or x ∈ B}.
Similarly, A ∩ B is used to denote the intersection of A and B—those elements
that are in both A and B:

A ∩ B = {x | x ∈ A and x ∈ B}.
The notation A ⊆ B, or A ⊂ B, indicates that A is a subset of B (possibly empty
or equal to B).

One-dimensional space (also called the real line or R) is just a straight line.
We put real number coordinates on this line by placing negative numbers on the
left and positive numbers on the right. (See Figure 1.)

x
0 1 2 3−3 −2 −1

Figure 1 The coordinate line R.
Two-dimensional space, denoted R2, is the familiar Cartesian plane. If we

construct two perpendicular lines (the x- and y-coordinate axes), set the origin
as the point of intersection of the axes, and establish numerical scales on these
lines, then we may locate a point in R2 by giving an ordered pair of numbers (x, y),
the coordinates of the point. Note that the coordinate axes divide the plane into
four quadrants. (See Figure 2.)

1

1

(x0, y0)

x

y

x0

y0

Figure 2 The coordinate plane R2.

Three-dimensional space, denoted R3, requires three mutually perpendicular
coordinate axes (called the x-, y- and z-axes) that meet in a single point (called
the origin) in order to locate an arbitrary point. Analogous to the case of R2, if we
establish scales on the axes, then we can locate a point in R3 by giving an ordered
triple of numbers (x, y, z). The coordinate axes divide three-dimensional space
into eight octants. It takes some practice to get your sense of perspective correct
when sketching points in R3. (See Figure 3.) Sometimes we draw the coordinate
axes in R3 in different orientations in order to get a better view of things. However,
we always maintain the axes in a right-handed configuration. This means that
if you curl the fingers of your right hand from the positive x-axis to the positive
y-axis, then your thumb will point along the positive z-axis. (See Figure 4.)

Although you need to recall particular techniques and methods from the
calculus you have already learned, here are some of the more important concepts
to keep in mind: Given a function f (x), the derivative f �(x) is the limit (if it exists)
of the difference quotient of the function:

f �(x) = lim
h→0

f (x + h) − f (x)

h
.



xvi To the Student: Some Preliminary Notation

(2, 4, 5)(−1, −2, 2)

1

4
2

2
−1 −1

−2
5

1 y

x

z

Figure 3 Three-dimensional
space R3. Selected points are
graphed.

y

y

x

xz

z

Figure 4 The x-, y-, and z-axes in R3 are always
drawn in a right-handed configuration.

The significance of the derivative f �(x0) is that it measures the slope of the line
tangent to the graph of f at the point (x0, f (x0)). (See Figure 5.) The derivative
may also be considered to give the instantaneous rate of change of f at x = x0.
We also denote the derivative f �(x) by d f/dx .

(x0, f(x0))

x

y

Figure 5 The derivative f �(x0) is
the slope of the tangent line to
y = f (x) at (x0, f (x0)).

The definite integral
∫ b

a f (x) dx of f on the closed interval [a, b] is the limit
(provided it exists) of the so-called Riemann sums of f :

∫ b

a
f (x) dx = lim

all �xi →0

n∑
i=1

f (x∗
i )�xi .

Here a = x0 < x1 < x2 < · · · < xn = b denotes a partition of [a, b] into subin-
tervals [xi−1, xi ], the symbol �xi = xi − xi−1 (the length of the subinterval), and
x∗

i denotes any point in [xi−1, xi ]. If f (x) ≥ 0 on [a, b], then each term f (x∗
i )�xi

in the Riemann sum is the area of a rectangle related to the graph of f . The
Riemann sum

∑n
i=1 f (x∗

i )�xi thus approximates the total area under the graph
of f between x = a and x = b. (See Figure 6.)

x

y

xi − 1 xix1 x2 x3a

x*
i

bxn − 1

…

……

…

…

…

Figure 6 If f (x) ≥ 0 on [a, b], then the Riemann sum
approximates the area under y = f (x) by giving the sum
of areas of rectangles.
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x

y

a b

y = f(x)

Figure 7 The area under the graph of y = f (x) is∫ b
a f (x) dx .

The definite integral
∫ b

a f (x) dx , if it exists, is taken to represent the area
under y = f (x) between x = a and x = b. (See Figure 7.)

The derivative and the definite integral are connected by an elegant result
known as the fundamental theorem of calculus. Let f (x) be a continuous func-
tion of one variable, and let F(x) be such that F �(x) = f (x). (The function F is
called an antiderivative of f .) Then

1.
∫ b

a
f (x) dx = F(b) − F(a);

2.
d

dx

∫ x

a
f (t) dt = f (x).

Finally, the end of an example is denoted by the symbol ◆ and the end of a
proof by the symbol ■.
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1 Vectors

1.1 Vectors in Two and Three
Dimensions

1.2 More About Vectors

1.3 The Dot Product

1.4 The Cross Product

1.5 Equations for Planes;
Distance Problems

1.6 Some n-dimensional
Geometry

1.7 New Coordinate Systems

True/False Exercises for
Chapter 1

Miscellaneous Exercises for
Chapter 1

1.1 Vectors in Two and Three Dimensions
For your study of the calculus of several variables, the notion of a vector is
fundamental. As is the case for many of the concepts we shall explore, there are
both algebraic and geometric points of view. You should become comfortable
with both perspectives in order to solve problems effectively and to build on your
basic understanding of the subject.

Vectors in R2 and R3: The Algebraic Notion

DEFINITION 1.1 A vector in R2 is simply an ordered pair of real numbers.
That is, a vector in R2 may be written as

(a1, a2) (e.g., (1, 2) or (π, 17)).

Similarly, a vector in R3 is simply an ordered triple of real numbers. That is,
a vector in R3 may be written as

(a1, a2, a3) (e.g., (π, e,
√

2)).

To emphasize that we want to consider the pair or triple of numbers as a
single unit, we will use boldface letters; hence a = (a1, a2) or a = (a1, a2, a3)
will be our standard notation for vectors in R2 or R3. Whether we mean that a is a
vector in R2 or in R3 will be clear from context (or else won’t be important to the
discussion). When doing handwritten work, it is difficult to “boldface” anything,
so you’ll want to put an arrow over the letter. Thus, �a will mean the same thing
as a. Whatever notation you decide to use, it’s important that you distinguish the
vector a (or �a) from the single real number a. To contrast them with vectors, we
will also refer to single real numbers as scalars.

In order to do anything interesting with vectors, it’s necessary to develop
some arithmetic operations for working with them. Before doing this, however,
we need to know when two vectors are equal.

DEFINITION 1.2 Two vectors a = (a1, a2) and b = (b1, b2) in R2 are
equal if their corresponding components are equal, that is, if a1 = b1 and
a2 = b2. The same definition holds for vectors in R3: a = (a1, a2, a3) and
b = (b1, b2, b3) are equal if their corresponding components are equal, that
is, if a1 = b1, a2 = b2, and a3 = b3.



2 Chapter 1 Vectors

EXAMPLE 1 The vectors a = (1, 2) and b = �
3
3 , 6

3

�
are equal in R2, but c =

(1, 2, 3) and d = (2, 3, 1) are not equal in R3. ◆

Next, we discuss the operations of vector addition and scalar multiplication.
We’ll do this by considering vectors in R3 only; exactly the same remarks will
hold for vectors in R2 if we simply ignore the last component.

DEFINITION 1.3 (VECTOR ADDITION) Let a = (a1, a2, a3) and b = (b1,

b2, b3) be two vectors in R3. Then the vector sum a + b is the vector in R3

obtained via componentwise addition: a + b = (a1 + b1, a2 + b2, a3 + b3).

EXAMPLE 2 We have (0, 1, 3) + (7, −2, 10) = (7, −1, 13) and (in R2):

(1, 1) + (π,
√

2) = (1 + π, 1 +
√

2). ◆

Properties of vector addition. We have

1. a + b = b + a for all a, b in R3 (commutativity);

2. a + (b + c) = (a + b) + c for all a, b, c in R3 (associativity);

3. a special vector, denoted 0 (and called the zero vector), with the property
that a + 0 = a for all a in R3.

These three properties require proofs, which, like most facts involving the al-
gebra of vectors, can be obtained by explicitly writing out the vector components.
For example, for property 1, we have that if

a = (a1, a2, a3) and b = (b1, b2, b3),
then

a + b = (a1 + b1, a2 + b2, a3 + b3)

= (b1 + a1, b2 + a2, b3 + a3)

= b + a,

since real number addition is commutative. For property 3, the “special vector”
is just the vector whose components are all zero: 0 = (0, 0, 0). It’s then easy to
check that property 3 holds by writing out components. Similarly for property 2,
so we leave the details as exercises.

DEFINITION 1.4 (SCALAR MULTIPLICATION) Let a = (a1, a2, a3) be a vec-
tor in R3 and let k ∈ R be a scalar (real number). Then the scalar prod-
uct ka is the vector in R3 given by multiplying each component of a by
k: ka = (ka1, ka2, ka3).

EXAMPLE 3 If a = (2, 0,
√

2) and k = 7, then ka = (14, 0, 7
√

2). ◆

The results that follow are not difficult to check—just write out the vector
components.
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Properties of scalar multiplication. For all vectors a and b in R3 (or R2)
and scalars k and l in R, we have

1. (k + l)a = ka + la (distributivity);

2. k(a + b) = ka + kb (distributivity);

3. k(la) = (kl)a = l(ka).

It is worth remarking that none of these definitions or properties really de-
pends on dimension, that is, on the number of components. Therefore we could
have introduced the algebraic concept of a vector in Rn as an ordered n-tuple
(a1, a2, . . . , an) of real numbers and defined addition and scalar multiplication
in a way analogous to what we did for R2 and R3. Think about what such a
generalization means. We will discuss some of the technicalities involved in §1.6.

(a1, a2)

x

y

Figure 1.1 A vector a ∈ R2

corresponds to a point in R2.

(a1, a2, a3)

y

x

z

Figure 1.2 A vector a ∈ R3

corresponds to a point in R3.

Vectors in R2 and R3: The Geometric Notion
Although the algebra of vectors is certainly important and you should become
adept at working algebraically, the formal definitions and properties tend to present
a rather sterile picture of vectors. A better motivation for the definitions just given
comes from geometry. We explore this geometry now. First of all, the fact that
a vector a in R2 is a pair of real numbers (a1, a2) should make you think of the
coordinates of a point in R2. (See Figure 1.1.) Similarly, if a ∈ R3, then a may
be written as (a1, a2, a3), and this triple of numbers may be thought of as the
coordinates of a point in R3. (See Figure 1.2.)

All of this is fine, but the results of performing vector addition or scalar mul-
tiplication don’t have very interesting or meaningful geometric interpretations in
terms of points. As we shall see, it is better to visualize a vector in R2 or R3 as an
arrow that begins at the origin and ends at the point. (See Figure 1.3.) Such a depic-
tion is often referred to as the position vector of the point (a1, a2) or (a1, a2, a3).

If you’ve studied vectors in physics, you have heard them described as objects
having “magnitude and direction.” Figure 1.3 demonstrates this concept, provided
that we take “magnitude” to mean “length of the arrow” and “direction” to be the
orientation or sense of the arrow. (Note: There is an exception to this approach,
namely, the zero vector. The zero vector just sits at the origin, like a point, and has
no magnitude and, therefore, an indeterminate direction. This exception will not
pose much difficulty.) However, in physics, one doesn’t demand that all vectors

(a1, a2)

x

y

In R2

a

In R3

(a1, a2, a3)

y

x

z

a

Figure 1.3 A vector a in R2 or R3 is represented by an arrow from the
origin to a.
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be represented by arrows having their tails bound to the origin. One is free to
“parallel translate” vectors throughout R2 and R3. That is, one may represent
the vector a = (a1, a2, a3) by an arrow with its tail at the origin (and its head at
(a1, a2, a3)) or with its tail at any other point, so long as the length and sense of
the arrow are not disturbed. (See Figure 1.4.) For example, if we wish to represent
a by an arrow with its tail at the point (x1, x2, x3), then the head of the arrow
would be at the point (x1 + a1, x2 + a2, x3 + a3). (See Figure 1.5.)

(a1, a2, a3)

y

x

z

a
a

a

a

a a

Figure 1.4 Each arrow is a
parallel translate of the position
vector of the point (a1, a2, a3) and
represents the same vector.

(x1, x2, x3)

(x1 + a1, x2 + a2, x3 + a3)

y

x

z

a

Figure 1.5 The vector
a = (a1, a2, a3) represented by an
arrow with tail at the point
(x1, x2, x3).

With this geometric description of vectors, vector addition can be visualized
in two ways. The first is often referred to as the “head-to-tail” method for adding
vectors. Draw the two vectors a and b to be added so that the tail of one of the
vectors, say b, is at the head of the other. Then the vector sum a + b may be
represented by an arrow whose tail is at the tail of a and whose head is at the head
of b. (See Figure 1.6.) Note that it is not immediately obvious that a + b = b + a
from this construction!a

a + b b

Figure 1.6 The vector
a + b may be represented
by an arrow whose tail is at
the tail of a and whose head
is at the head of b.

The second way to visualize vector addition is according to the so-called
parallelogram law: If a and b are nonparallel vectors drawn with their tails ema-
nating from the same point, then a + b may be represented by the arrow (with its
tail at the common initial point of a and b) that runs along a diagonal of the paral-
lelogram determined by a and b (Figure 1.7). The parallelogram law is completely
consistent with the head-to-tail method. To see why, just parallel translate b to the
opposite side of the parallelogram. Then the diagonal just described is the result of
adding a and (the translate of) b, using the head-to-tail method. (See Figure 1.8.)

We still should check that these geometric constructions agree with our alge-
braic definition. For simplicity, we’ll work in R2. Let a = (a1, a2) and b = (b1, b2)
as usual. Then the arrow obtained from the parallelogram law addition of a and
b is the one whose tail is at the origin O and whose head is at the point P in
Figure 1.9. If we parallel translate b so that its tail is at the head of a, then it is
immediate that the coordinates of P must be (a1 + b1, a2 + b2), as desired.

Scalar multiplication is easier to visualize: The vector ka may be represented
by an arrow whose length is |k| times the length of a and whose direction is the
same as that of a when k > 0 and the opposite when k < 0. (See Figure 1.10.)

It is now a simple matter to obtain a geometric depiction of the difference
between two vectors. (See Figure 1.11.) The difference a − b is nothing more
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a

a + bb

Figure 1.7 The vector
a + b may be represented
by the arrow that runs along
the diagonal of the
parallelogram determined
by a and b.

a

a + bb
b
(translated)

Figure 1.8 The equivalence of the
parallelogram law and the
head-to-tail methods of vector
addition.

x
A

B

y

b2

a2

a1 b1

P

b

a

b

Figure 1.9 The point P has coordinates
(a1 + b1, a2 + b2).

a

2a

3
2

− a

Figure 1.10 Visualization of
scalar multiplication.

than a + (−b) (where −b means the scalar −1 times the vector b). The vector
a − b may be represented by an arrow pointing from the head of b toward the
head of a; such an arrow is also a diagonal of the parallelogram determined by a
and b. (As we have seen, the other diagonal can be used to represent a + b.)

a

b c = a − b

Figure 1.11 The
geometry of vector
subtraction. The vector c
is such that b + c = a.
Hence, c = a − b.

Here is a construction that will be useful to us from time to time.

DEFINITION 1.5 Given two points P1(x1, y1, z1) and P2(x2, y2, z2) in R3,
the displacement vector from P1 to P2 is

−−→
P1 P2 = (x2 − x1, y2 − y1, z2 − z1).

This construction is not hard to understand if we consider Figure 1.12. Given
the points P1 and P2, draw the corresponding position vectors

−−→
O P1 and

−−→
O P2.

Then we see that
−−→
P1 P2 is precisely

−−→
O P2−−−→

O P1. An analogous definition may
be made for R2.y

x

z

O

P1

P2

Figure 1.12 The displacement

vector
−−→
P1 P2, represented by the

arrow from P1 to P2, is the
difference between the position
vectors of these two points.

In your study of the calculus of one variable, you no doubt used the notions of
derivatives and integrals to look at such physical concepts as velocity, acceleration,
force, etc. The main drawback of the work you did was that the techniques involved
allowed you to study only rectilinear, or straight-line, activity. Intuitively, we all
understand that motion in the plane or in space is more complicated than straight-
line motion. Because vectors possess direction as well as magnitude, they are
ideally suited for two- and three-dimensional dynamical problems.




